Periodic Table Element Comparison: Compare Elements - Carbon vs Argon
Compare Carbon and Argon on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Carbon vs Argon with most reliable information about their properties, attributes, facts, uses etc. You can compare C vs Ar on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. Carbon and Argon comparison table on more than 90 properties.
Carbon and Argon Comparison
Facts
Name | Carbon | Argon |
---|---|---|
Atomic Number | 6 | 18 |
Atomic Symbol | C | Ar |
Atomic Weight | 12.0107 | 39.948 |
Phase at STP | Solid | Gas |
Color | Black | Colorless |
Metallic Classification | Other Nonmetal | Noble Gas |
Group in Periodic Table | group 14 | group 18 |
Group Name | carbon family | helium family or neon family |
Period in Periodic Table | period 2 | period 3 |
Block in Periodic Table | p -block | p -block |
Electronic Configuration | [He] 2s2 2p2 | [Ne] 3s2 3p6 |
Electronic Shell Structure (Electrons per shell) | 2, 4 | 2, 8, 8 |
Melting Point | 3823 K | 83.8 K |
Boiling Point | 4300 K | 87.3 K |
CAS Number | CAS7440-44-0 | CAS7440-37-1 |
Neighborhood Elements | Neighborhood Elements of Carbon | Neighborhood Elements of Argon |
History
Parameter | Carbon | Argon |
---|---|---|
History | The element Carbon was discovered by Egyptians and Sumerians in year 3750 BCE. Carbon derived its name the Latin word carbo, meaning 'coal'. | The element Argon was discovered by Lord Rayleigh and W. Ramsay in year 1894 in United Kingdom. Argon derived its name from the Greek word argos, meaning 'idle'. |
Discovery | Egyptians and Sumerians (3750 BCE) | Lord Rayleigh and W. Ramsay (1894) |
Isolated | () | Lord Rayleigh and W. Ramsay (1894) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Carbon | Argon |
---|---|---|
Abundance in Universe | 5000000 / 500000 | 200000 / 6000 |
Abundance in Sun | 3000000 / 300000 | 70000 / 2000 |
Abundance in Meteorites | 15000000 / 18000000 | - / - |
Abundance in Earth's Crust | 1800000 / 3100000 | 1500 / 780 |
Abundance in Oceans | 28000 / 14400 | 450 / 70 |
Abundance in Humans | 230000000 / 120000000 | - / - |
Crystal Structure and Atomic Structure
Property | Carbon | Argon |
---|---|---|
Atomic Volume | 5.29 cm3/mol | 22.4134 cm3/mol |
Atomic Radius | 67 pm | 71 pm |
Covalent Radius | 77 pm | 97 pm |
Van der Waals Radius | 170 pm | 188 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ||
Absorption Spectrum | ||
Lattice Constant | 246.4, 246.4, 671.1 pm | 525.6, 525.6, 525.6 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, π/2 |
Space Group Name | P63/mmc | Fm_ 3m |
Space Group Number | 194 | 225 |
Crystal Structure | Simple Hexagonal | Face Centered Cubic |
Atomic and Orbital Properties
Property | Carbon | Argon |
---|---|---|
Atomic Number | 6 | 18 |
Number of Electrons (with no charge) | 6 | 18 |
Number of Protons | 6 | 18 |
Mass Number | 12.0107 | 39.948 |
Number of Neutrons | 6 | 22 |
Shell structure (Electrons per energy level) | 2, 4 | 2, 8, 8 |
Electron Configuration | [He] 2s2 2p2 | [Ne] 3s2 3p6 |
Valence Electrons | 2s2 2p2 | 3s2 3p6 |
Oxidation State | -4, -3, -2, -1, 0, 1, 2, 3, 4 | 0 |
Atomic Term Symbol (Quantum Numbers) | 3P0 | 1S0 |
Shell structure |
Isotopes and Nuclear Properties
Carbon has 2 stable naturally occuring isotopes while Argon has 3 stable naturally occuring isotopes.
Parameter | Carbon | Argon |
---|---|---|
Known Isotopes | 8C, 9C, 10C, 11C, 12C, 13C, 14C, 15C, 16C, 17C, 18C, 19C, 20C, 21C, 22C | 30Ar, 31Ar, 32Ar, 33Ar, 34Ar, 35Ar, 36Ar, 37Ar, 38Ar, 39Ar, 40Ar, 41Ar, 42Ar, 43Ar, 44Ar, 45Ar, 46Ar, 47Ar, 48Ar, 49Ar, 50Ar, 51Ar, 52Ar, 53Ar |
Stable Isotopes | Naturally occurring stable isotopes: 12C, 13C | Naturally occurring stable isotopes: 36Ar, 38Ar, 40Ar |
Neutron Cross Section | 0.0035 | 0.65 |
Neutron Mass Absorption | 0.000015 | 0.0006 |
Chemical Properties: Ionization Energies and electron affinity
Property | Carbon | Argon |
---|---|---|
Valence or Valency | 4 | 0 |
Electronegativity | 2.55 Pauling Scale | - |
Electron Affinity | 153.9 kJ/mol | 0 kJ/mol |
Ionization Energies | 1st: 1086.5 kJ/mol 2nd: 2352.6 kJ/mol 3rd: 4620.5 kJ/mol 4th: 6222.7 kJ/mol 5th: 37831 kJ/mol 6th: 47277 kJ/mol | 1st: 1520.6 kJ/mol 2nd: 2665.8 kJ/mol 3rd: 3931 kJ/mol 4th: 5771 kJ/mol 5th: 7238 kJ/mol 6th: 8781 kJ/mol 7th: 11995 kJ/mol 8th: 13842 kJ/mol 9th: 40760 kJ/mol 10th: 46186 kJ/mol 11th: 52002 kJ/mol 12th: 59653 kJ/mol 13th: 66199 kJ/mol 14th: 72918 kJ/mol 15th: 82473 kJ/mol 16th: 88576 kJ/mol 17th: 397605 kJ/mol 18th: 427066 kJ/mol |
Physical Properties
Property | Carbon | Argon |
---|---|---|
Density | 2.26 g/cm3 | 0.001784 g/cm3 |
Molar Volume | 5.29 cm3/mol | 22.4134 cm3/mol |
Elastic Properties | ||
Young Modulus | - | - |
Shear Modulus | - | - |
Bulk Modulus | 33 GPa | - |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 0.5 MPa | - |
Vickers Hardness | - | - |
Brinell Hardness | - | - |
Electrical Properties | ||
Electrical Conductivity | 100000 S/m | - |
Resistivity | 0.00001 m Ω | - |
Superconducting Point | - | - |
Heat and Conduction Properties | ||
Thermal Conductivity | 140 W/(m K) | 0.01772 W/(m K) |
Thermal Expansion | 0.0000071 /K | - |
Magnetic Properties | ||
Magnetic Type | Diamagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | -6.2e-9 m3/kg | -6e-9 m3/kg |
Molar Magnetic Susceptibility | -7.45e-11 m3/mol | -2.4e-10 m3/mol |
Volume Magnetic Susceptibility | -0.000014 | -1.07e-8 |
Optical Properties | ||
Refractive Index | 2.417 | 1.000281 |
Acoustic Properties | ||
Speed of Sound | 18350 m/s | 319 m/s |
Thermal Properties - Enthalpies and thermodynamics
Property | Carbon | Argon |
---|---|---|
Melting Point | 3823 K | 83.8 K |
Boiling Point | 4300 K | 87.3 K |
Critical Temperature | - | 150.87 K |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 105 kJ/mol | 1.18 kJ/mol |
Heat of Vaporization | 715 kJ/mol | 6.5 kJ/mol |
Heat of Combustion | -393.5 J/(kg K) | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Carbon | Argon |
---|---|---|
CAS Number | CAS7440-44-0 | CAS7440-37-1 |
RTECS Number | {RTECSHL4158550, RTECSFF5250100, RTECSMD9659600, N/A} | RTECSCF2300000 |
DOT Hazard Class | 4.2 | 2.2 |
DOT Numbers | 1361 | 1951 |
EU Number | - | - |
NFPA Fire Rating | 1 | - |
NFPA Health Rating | 0 | - |
NFPA Reactivity Rating | 0 | - |
NFPA Hazards | - | - |
AutoIgnition Point | - | - |
Flashpoint | - | - |
Compare With Other Elements
Compare Carbon and Argon with other elements of the periodic table.
Compare Carbon with all Group 14 elementsCompare Carbon with SiliconCompare Carbon with GermaniumCompare Carbon with TinCompare Carbon with LeadCompare Carbon with Flerovium Compare Carbon with all Period 2 elementsCompare Carbon with LithiumCompare Carbon with BerylliumCompare Carbon with BoronCompare Carbon with NitrogenCompare Carbon with OxygenCompare Carbon with FluorineCompare Carbon with Neon Compare Carbon with all Other Nonmetal elements | Compare Argon with all Group 18 elementsArgon vs Helium ComparisonArgon vs Neon ComparisonArgon vs Krypton ComparisonArgon vs Xenon ComparisonArgon vs Radon ComparisonArgon vs Oganesson Comparison Compare Argon with all Period 3 elementsArgon vs Sodium ComparisonArgon vs Magnesium ComparisonArgon vs Aluminium ComparisonArgon vs Silicon ComparisonArgon vs Phosphorus ComparisonArgon vs Sulfur ComparisonArgon vs Chlorine Comparison Compare Argon with all Noble Gas elements |