Periodic Table Element Comparison: Compare Elements - Tin vs Lead
Compare Tin and Lead on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Tin vs Lead with most reliable information about their properties, attributes, facts, uses etc. You can compare Sn vs Pb on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. Tin and Lead comparison table on more than 90 properties.
Tin and Lead Comparison
Facts
Name | Tin | Lead |
---|---|---|
Atomic Number | 50 | 82 |
Atomic Symbol | Sn | Pb |
Atomic Weight | 118.71 | 207.2 |
Phase at STP | Solid | Solid |
Color | Silver | SlateGray |
Metallic Classification | Post Transition Metal | Post Transition Metal |
Group in Periodic Table | group 14 | group 14 |
Group Name | carbon family | carbon family |
Period in Periodic Table | period 5 | period 6 |
Block in Periodic Table | p -block | p -block |
Electronic Configuration | [Kr] 4d10 5s2 5p2 | [Xe] 4f14 5d10 6s2 6p2 |
Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 18, 4 | 2, 8, 18, 32, 18, 4 |
Melting Point | 505.08 K | 600.61 K |
Boiling Point | 2875 K | 2022 K |
CAS Number | CAS7440-31-5 | CAS7439-92-1 |
Neighborhood Elements | Neighborhood Elements of Tin | Neighborhood Elements of Lead |
History
Parameter | Tin | Lead |
---|---|---|
History | The element Tin was discovered by Unknown in year 3500 BCE. Tin derived its name from English word (stannum in Latin). | The element Lead was discovered by Africans in year 7000 BCE. Lead derived its name from English word (plumbum in Latin). |
Discovery | Unknown (3500 BCE) | Africans (7000 BCE) |
Isolated | (2000 BCE) | Abydos, Egypt (3800 BCE) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Tin | Lead |
---|---|---|
Abundance in Universe | 4 / 0.04 | 10 / 0.06 |
Abundance in Sun | 9 / 0.1 | 10 / 0.07 |
Abundance in Meteorites | 1200 / 170 | 1400 / 100 |
Abundance in Earth's Crust | 2200 / 380 | 10000 / 1000 |
Abundance in Oceans | 0.01 / 0.00052 | 0.03 / 0.00090 |
Abundance in Humans | 200 / 11 | 1700 / 50 |
Crystal Structure and Atomic Structure
Property | Tin | Lead |
---|---|---|
Atomic Volume | 16.239 cm3/mol | 18.27 cm3/mol |
Atomic Radius | 145 pm | 154 pm |
Covalent Radius | 141 pm | 147 pm |
Van der Waals Radius | 217 pm | 202 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ||
Absorption Spectrum | ||
Lattice Constant | 583.18, 583.18, 318.19 pm | 495.08, 495.08, 495.08 pm |
Lattice Angle | π/2, π/2, π/2 | π/2, π/2, π/2 |
Space Group Name | I41/amd | Fm_ 3m |
Space Group Number | 141 | 225 |
Crystal Structure | Centered Tetragonal | Face Centered Cubic |
Atomic and Orbital Properties
Property | Tin | Lead |
---|---|---|
Atomic Number | 50 | 82 |
Number of Electrons (with no charge) | 50 | 82 |
Number of Protons | 50 | 82 |
Mass Number | 118.71 | 207.2 |
Number of Neutrons | 69 | 125 |
Shell structure (Electrons per energy level) | 2, 8, 18, 18, 4 | 2, 8, 18, 32, 18, 4 |
Electron Configuration | [Kr] 4d10 5s2 5p2 | [Xe] 4f14 5d10 6s2 6p2 |
Valence Electrons | 5s2 5p2 | 6s2 6p2 |
Oxidation State | -4, 2, 4 | 2, 4 |
Atomic Term Symbol (Quantum Numbers) | 3P0 | 3P0 |
Shell structure |
Isotopes and Nuclear Properties
Tin has 10 stable naturally occuring isotopes while Lead has 4 stable naturally occuring isotopes.
Parameter | Tin | Lead |
---|---|---|
Known Isotopes | 99Sn, 100Sn, 101Sn, 102Sn, 103Sn, 104Sn, 105Sn, 106Sn, 107Sn, 108Sn, 109Sn, 110Sn, 111Sn, 112Sn, 113Sn, 114Sn, 115Sn, 116Sn, 117Sn, 118Sn, 119Sn, 120Sn, 121Sn, 122Sn, 123Sn, 124Sn, 125Sn, 126Sn, 127Sn, 128Sn, 129Sn, 130Sn, 131Sn, 132Sn, 133Sn, 134Sn, 135Sn, 136Sn, 137Sn | 178Pb, 179Pb, 180Pb, 181Pb, 182Pb, 183Pb, 184Pb, 185Pb, 186Pb, 187Pb, 188Pb, 189Pb, 190Pb, 191Pb, 192Pb, 193Pb, 194Pb, 195Pb, 196Pb, 197Pb, 198Pb, 199Pb, 200Pb, 201Pb, 202Pb, 203Pb, 204Pb, 205Pb, 206Pb, 207Pb, 208Pb, 209Pb, 210Pb, 211Pb, 212Pb, 213Pb, 214Pb, 215Pb |
Stable Isotopes | Naturally occurring stable isotopes: 112Sn, 114Sn, 115Sn, 116Sn, 117Sn, 118Sn, 119Sn, 120Sn, 122Sn, 124Sn | Naturally occurring stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb |
Neutron Cross Section | 0.63 | 0.171 |
Neutron Mass Absorption | 0.0002 | 0.00003 |
Chemical Properties: Ionization Energies and electron affinity
Property | Tin | Lead |
---|---|---|
Valence or Valency | 4 | 4 |
Electronegativity | 1.96 Pauling Scale | 2.33 Pauling Scale |
Electron Affinity | 107.3 kJ/mol | 35.1 kJ/mol |
Ionization Energies | 1st: 708.6 kJ/mol 2nd: 1411.8 kJ/mol 3rd: 2943 kJ/mol 4th: 3930.3 kJ/mol 5th: 7456 kJ/mol | 1st: 715.6 kJ/mol 2nd: 1450.5 kJ/mol 3rd: 3081.5 kJ/mol 4th: 4083 kJ/mol 5th: 6640 kJ/mol |
Physical Properties
Property | Tin | Lead |
---|---|---|
Density | 7.31 g/cm3 | 11.34 g/cm3 |
Molar Volume | 16.239 cm3/mol | 18.27 cm3/mol |
Elastic Properties | ||
Young Modulus | 50 | 16 |
Shear Modulus | 18 GPa | 5.6 GPa |
Bulk Modulus | 58 GPa | 46 GPa |
Poisson Ratio | 0.36 | 0.44 |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 1.5 MPa | 1.5 MPa |
Vickers Hardness | - | - |
Brinell Hardness | 51 MPa | 38.3 MPa |
Electrical Properties | ||
Electrical Conductivity | 9100000 S/m | 4800000 S/m |
Resistivity | 1.1e-7 m Ω | 2.1e-7 m Ω |
Superconducting Point | 3.72 | 7.2 |
Heat and Conduction Properties | ||
Thermal Conductivity | 67 W/(m K) | 35 W/(m K) |
Thermal Expansion | 0.000022 /K | 0.0000289 /K |
Magnetic Properties | ||
Magnetic Type | Diamagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | -3.1e-9 m3/kg | -1.5e-9 m3/kg |
Molar Magnetic Susceptibility | -3.68e-10 m3/mol | -3.11e-10 m3/mol |
Volume Magnetic Susceptibility | -0.0000227 | -0.000017 |
Optical Properties | ||
Refractive Index | - | - |
Acoustic Properties | ||
Speed of Sound | 2500 m/s | 1260 m/s |
Thermal Properties - Enthalpies and thermodynamics
Property | Tin | Lead |
---|---|---|
Melting Point | 505.08 K | 600.61 K |
Boiling Point | 2875 K | 2022 K |
Critical Temperature | - | - |
Superconducting Point | 3.72 | 7.2 |
Enthalpies | ||
Heat of Fusion | 7 kJ/mol | 4.77 kJ/mol |
Heat of Vaporization | 290 kJ/mol | 178 kJ/mol |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Tin | Lead |
---|---|---|
CAS Number | CAS7440-31-5 | CAS7439-92-1 |
RTECS Number | {N/A, RTECSXP7320000} | RTECSOF7525000 |
DOT Hazard Class | - | - |
DOT Numbers | - | 3077 |
EU Number | - | - |
NFPA Fire Rating | 3 | 0 |
NFPA Health Rating | 1 | 2 |
NFPA Reactivity Rating | 3 | 0 |
NFPA Hazards | - | - |
AutoIgnition Point | - | - |
Flashpoint | - | - |
Compare With Other Elements
Compare Tin and Lead with other elements of the periodic table.